Carrier-induced transient defect mechanism for non-radiative recombination in InGaN light-emitting devices.

نویسندگان

  • Junhyeok Bang
  • Y Y Sun
  • Jung-Hoon Song
  • S B Zhang
چکیده

Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. This NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited to InGaN-based light emitting devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots

In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to sol...

متن کامل

Investigation of low-temperature electroluminescence of InGaN/GaN based nanorod light emitting arrays.

For InGaN/GaN based nanorod devices using a top-down etching process, the optical output power is affected by non-radiative recombination due to sidewall defects (which decrease light output efficiency) and the mitigated quantum confined Stark effect (QCSE) due to strain relaxation (which increases internal quantum efficiency). Therefore, the exploration of low-temperature optical behaviors of ...

متن کامل

Blue light emitting diode exceeding 100 % quantum efficiency

1 Introduction GaN-based light-emitting diodes (LEDs) deliver the desired high efficiency only at relatively low injection current density [1]. At the elevated current densities required in practical high-brightness applications , the efficiency is substantially reduced. This efficiency droop phenomenon has been intensely investigated for a number of years, but the physical mechanisms behind it...

متن کامل

Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels ne...

متن کامل

Investigation of radiative tunneling in GaN/InGaN single quantum well light-emitting diodes

The mechanisms of carrier injection and recombination in a GaN/InGaN single quantum well light-emitting diodes have been studied. Strong defect-assisted tunneling behavior has been observed in both forward and reverse current– voltage characteristics. In addition to band-edge emission at 400 nm, the electroluminescence has also been attributed to radiative tunneling from band-to-deep level stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016